
RD-0134 888 

UNCLASSIFIED 

MVOPIC HEURISTICS FOR THE SINGLE MACHINE WEIGHTED        1/1 
TARDINESS PROBLEM(U) CARNEGIE-MELLON UNIV PITTSBURGH PA 
ROBOTICS INST  T E MORTON ET AL. 28 NOV 82 
CMU-RI-TR-83-9 F49628-82-K-8817 F/G 12/1    NL 



.-^•. »'i »•.«.»'. • .»—» .•».•» .»."•».»:•.»' y •"•'*.'-" •*. •"" ~~ ' " -    •   r 

to 

S 

K I 

: 

fa 

LO 

I.I 

.   MM 

la IM 

1.25 i 1.4 

ZO 

1.8 

1.6 

MICROCOPY  RESOLUTION  TEST  CHART 

NATIONAL   BUREAU   OF   STANDARDS-1963-A u 

M 

:, 

a 

h-g^^'W ^'tti'^^.-i'.^.'aVi.i •  •'-*.-•» -••-•--....   . 



ROBOTICS 
INSTITUTE 

Carnegie-Mellon University 
The Robotics Institute 

TechnicaJ Report 

V.'l 

\  i 10 
1 &1 

NOV 2 2 ^33 

f c ;"/    j : T    1 

<        : 



ii.i   ii  i,'.».'i'i'.'.' '» '. » - ' J •    • • ^ • " . •!••'• ••;• i ' i    i.   » " ' ' '    '    •.   »   •'!''•'•.   »ii » i ». i •—-.   -.   -*—-••»•••'••—»•. » • • . • • " 

CMU-RI-TR-83-9 

Carncgie-Mcllon University 
Pittsburgh, Pennsylvania 15213 

University of Michigan 
Ann Arbor, Michigan 

28 November 1982 

7 

This research was supported, in part, by the Air Force Office of Scientific Research under contract 
F49620-82-K0017. 

•1 

Myopic Heuristics for the Single 
Machine Weighted Tardiness Problem 

Thomas F. Morton and Rum Mohan V. Rachamadugu 

n 

r~.   ., I 
> 

IM J 

Copyright (c) 1983 Carnegie-Mellon University • 

g 
3 

--------       -        -     T-        -  _^„        _      ^     .,       .,       ,.^-.       • .   -    ^-.   .        .-.•-•. ......        -•-        •--,-••••        .•...-. -1..K-   ^.^..-J-.-.^-    ....      ^ 



••. tf". •- 1 . ^', v v . -•,' .-' .-, »•. . . v • • •• .••'.-   .-,  •• •• .• •» J* '.-, " ' " • "• •—-.-.-.-.- -—' - ". » V » '. ' . ' • l » ' 

I 

I 

Unclassified 
SECURITY CL'SSi f |-»T:as Or "-IS 3«r.E '«>>-i D« 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

I.   REPORT NUMBER 

CMU-RI-TR-83-9 

1. GOVT   ACCESSION   SOI   i-     RECIPIENT'S CATALOG  NUMBtR 

Vih-hM Hid 
4.   TITLE (and Submit) 

MYOPIC HEURISTICS FOR THE SINGLE MACHINE WEIGHTED 
TARDINESS PROBLEM 

7. AUTMORf»J 

Thomas E. Morton and Ram Mohan V. Rachamadugu 

t.    PERFORMING ORGANIZATION   NAME  ANO  AODRESS 
Carnegie-Mellon University 
The Robotics Institute 
Pittsburgh, PA.  15213 

II.   CONTROLLING OFFICE NAME AND ADDRESS 

U.   MONITORING AGENCY NAME ft  AODRESSfl/ dltlmtant (nun Controlling Ollica) 

5.   TYPE OF REPORT ft PERIOD COVERED 

Interim 

«. PERFORMING ORG. REPORT NUMBER 

t. CONTRACT OR GRANT NUMBERf«; 

F49620-82-K-0017 

10.   PROGRAM El-EMENT. PROJECT    TAS< 
AREA ft WORK UNIT NUMBERS 

12.   REPORT DATE 
28 November  1982 

13.   NUMBER OF PAGES 
33 

IS.   SECURITY CLASS, (ol thtm report; 

UNCLASSIFIED 

IS«.    DECLASSIFI CATION/DOWNGRADING 
SCHEDULE 

16.   OISTRIS'JTION STATEMENT (ol thim Report) 

17.   DISTRIBUTION STATEMENT (ol th» mbiuact entered In Block JO, It dlllotont bom Report) 

«.'*• 

Approved for public release; distribution unlimited 

I».   SUPPLEMENTARY NOTES 

I».   KEY WORDS fConiinu. on reveree tiao II neceemmry mnd Identity by block nusibmr) 

20.    ABSTRACT (Csnllnu* on WWWI »Id» II neceeemry mnd Identity by block m-mö.rj 

It is well known that the single machine weighted tardiness problem (n/l//Iw T ) 
is NP-complete. Hence, it is unlikely that there exist polynomially bounded algo- 
rithms to solve this problem. Further, the problem is of great practical signifi- 
cance. We develop myopic heuristics for this problem; these heuristics have been 
tested against competing heuristics, against a tight lower bound, and where practi- 
cal, against the optimum, with uniformly good results. Also, these heuristics can 
be used as dispatching rules in practical situations. In our efforts to seek 
optimum solutions we develop a hybrid dynamic programmin procedure (a modified 

DD %\ FORM AM 71 1473 EDITION OF   I NOV »S IS OBSOLETE 
S/N   01O2-OU-9SÜ1   I 

(UVPI) 

UNCLASSIFIED 
SECURITY CLASSIFICATION Or"   THIS PAGE (»n»n MM Mnlered) 

• •••>'•    l.l^t.'l.lfc • •'*   ll -   '-     -•   _L. 



' V *.  *•  '. *.      •'. ?* ~~- *."V » ' • '-•••••'•*•*-••*   • • *  "-".*•*•* t • 1  »».'•••••»'.-.«.» jm I   ._•••._.. j .,..».-,. , - , •-,.,... i 

1 

.- 

• 

version of Baker's procedure) which provides lower and upper bounds when it becomes 
impractical to find the optimum solution.  Further, stopping rules are developed 
for identifying optimal first job/jobs. 

> n . i «\.i  •••'•ii . i .'i . ». V>> , . .', . t - •'-' "- V„ -'- '-  - •-  I, r3 *-' *-' "-*' -..._. . v . . ..   •.-••- 



.". .T1  .-   r—r- .»'.». •: • - ••-'' •   i , J . r   •'.>:• 

a 

Abstract 

"O It is well known that the single machine weighted tardiness problem tnf-W£wT-^ 

is NP-complete. Hence, it is unlikely that there exist polynomially bounded algorithms 

to solve this problem. Further, the problem is of great practical significance. We 

develop myopic heuristics for this problem; these heuristics have been tested against 

competing heuristics, against a tight lower bound, and where practical, against the 

optimum, with uniformly good results. Also, these heuristics can be used as 

dispatching rules in practical situations. In our efforts to seek optimum solutions we 

develop a hybrid dynamic programming procedure (a modified version of Baker's 

procedure) which provides lower and upper bounds when it becomes impractical to 

find the optimum solution. Further, stopping rules are developed for identifying optimal 

first job/jobs.^ 
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MYOPIC HEURISTICS FOR THE 
SINGLE MACHINE WEIGHTED TARDINESS PROBLEM 

1. Introduction 

The   problem   of   minimizing   weighted  tardiness   of   a  given   set  of   jobs   to   be 

processed   on   a   single   machine   has   attracted   the   attention   of   several   researchers. 

I Lenstra [9]   has   shown  that  the  problem  is  NP-complete.   In  view  of  this,   it  is  not 

surprising   that   earlier   attempts   in   solving  the   problem   resorted  to  both  enumerative 

9 techniques  and   heuristics.     Panwalkar,   Dudek   and   Smith [7]   report  that  in  a  survey 

* conducted by  them,  the proportion of  respondents who ranked meeting due dates  or 

minimizing penalty  costs as the most important criterion was larger than for any other 

criterion.    In view of the practical importance of this problem.there a exists need for 

developing 'good' heuristics which are useful  for the  single machine case and may be 

extended and generalized to multiprocessors, flow shops and job shops. 

Q Surprisingly,  there  are very  few  heuristics  for  the  weighted  tardiness  problem. 

_ The  problem  may  be  defined  as  follows:  we  have  n  jobs  J ,  J     J, J    that  arrive 

•; simultaneously to be processed on the machine.    Each  job  J   has associated with it a 

triplelp-.d^w) which represents the processing time, the due date and the weight of the 

'' jobs.      Each   job   has   associated   with   it   the   penalty   function   C(t)   where   t.   is   the 

I completion time of the job.   C ttj is given by 
• 

'-'. C(t.) = w.(t-d.)+ 

1   I I   I      I 

5 We   wish   to   find   a   schedule   such   that   Z'~ ,C It.)   is   a   minimum.      Without   loss   of 

generality, we further assume that d   < ZJ~" p.    Any job(s) not satisfying this condition 

> can  be  deleted  from  the  problem  since  there  always  exist  optimal  solutions  in  which 

we use the notation. X     = max(O.X) 
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I such a  job(s) occupy the  last position in the sequence.    This condition can recursively 

be applied on the problem until the condition is satisfied. 

2. Review of earlier heuristics 

It is well known that if no job can be completed earlier than its due date, then 

the weighted shortest processing time rule(WSPT) minimizes weighted tardiness [1]. 

This is likely to be approximately the case when the machine or the shop is 'heavily 

loaded'. 

Another heuristic which may be used is the earliest due date rule(EDD). Arrange 

the jobs according to the EDD rule. If it is possible under any rule to schedule all 

jobs on time, then the rule is optimal. This rule is likely to perform well when the 

shop or the machine is Tightly loaded'  [13]. 

Taking into consideration the fact that these simple heuristics perform well under 

these  extreme  situations,   Schild and  Fredman [13]   developed  a  procedure that they 

claimed   to    give   an    optimal    schedule.       However,    Eastman  [6]    showed   that   the 

procedure  is  not an  exact  one  by  constructing  a  counterexample.     No  computational 

£' studies  have  been  reported  to  determine  how  good  a  solution  is  generated  by  their 

procedure. 

In a paper on the experimental comparison of solution algorithms for the 

average(unweighted) tardiness problems. Baker and Martin [ 1 ] refer to Montagne's 

method [10]. They claim it to be very effective for the weighted version of the 

tardiness  problem.     The  heuristic  is  as  follows:   sequence  the  jobs  in  nondecreasing 

order of p /w (Zj*"p -d ) [3]. 

Yet another heuristic proposed by Baker [4] for the average or unweighted 

tardiness problem, called modified due date method', is as follows: if it is impossible 

to complete a job before its due date revise its due date to be the earliest possible 

completion time.    Schedule next the job that has the earliest due date.    It appears that 
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the procedure has done well in experimental studies [4], It can easily be seen that 

Baker's rule indeed provides optimal solution in two extreme cases for the unweighted 

or average tardiness problems- when all jobs in an optimal sequence are either early 

or late. 

3. Description of our heuristic 

Prior to the description of our heuristic, consider the following property which 

characterizes an optimal solution to the single machine weighted tardiness problem. 

PROPOSITION I: Let J and J be any two adjacent jobs (J precedes JJ in an 

optimal sequence for the single machine problem. The sequence satisfies the following 

property- 

aj, "i-'-p/r >_ M, 'v-'/i' 

where t is the start time for J 
i. 

PROOF:    We have to consider six subcases.    These are as follows: 

Case I. Both jobs are early in either positionFigure 1). In this case we are 

indifferent as to which sequenceU. immediately precedes J or J immediately precedes 

J) is used. If J does not precede J. in a given optimal sequence, we can create 

another optimal sequence satisfying the property by merely interchanging jobs J  and J.. 

1           1 

J. J. 
1             1 
1             1 

1 J 1                 1 
1 1 1— 

Figure   1 

m                                        Case II: Both jobs are late in either DOsition(Fiqure 2). 

,v 
v 

• 
1 
j*. 
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: •:  ,•"-.-. -.'  . .•    , .      '."     •    •_.      •'.-'_-' _   .                 ,.-•"_ •]" -     ^ • ±x* 
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Figure 2 

Since both jobs are late in either position, it is necessary that the the job with higher 

ratio of the weight to the processing time must be scheduled first for the sequence 

to be optimal.    Since d.<t+p  and d.<t+p.. 

wi wi        ^ ^.<±^S)\  =j(,."^) 
Case  III:    One  job  is  late in either position and the other is early  in the earlier 

position and late in the later position(Figure 3) 

I I 

i 

J. 

^i 

d   > t + p 

Figure 3 

d. < t + p. + p} d   < t 

Cost if J  precedes J   = w(t+p-d) +w (t+p.+p-d.) 

Cost if J   precedes J  • w (t+p +p -d ) 
j r I •      > ' j    J 

J   should precede J   if 

w(t+p+p-d) ^ w(t*p-d) • w(t+p+p-d) 

1 

:   -    ,_- . •   •.'•.• 
.       •   • • 
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w. 
1 

w.   (       (d. - t - p.)) 
-L 1- J 11 
pj \       pi   J 

Since d   < t and d. < t + p. + p., the above expression may be rewritten as 

Case   IV:       One   job   is   late   in   either   position   and   the   other   is   early   in   either 

position(Figure 4). 

1 
i 

J. J. 
i 
1 

l J i 
i 

d. d. 

Figure 4 

d   < t d   >t+p.+p. 

It is obvious that J   should precede J 

Since d -(t+p ) > p, 

Since d   < t, 

j.   ( ( d , - t - p . )+ ) 

>j \ Pi ) 
=  0 

it     pj   *     Pj»     Pi   j 

Case V:    One  job  is  early  m either position and the other is early in the earlier 

position and late m the later positionlFigure 5). 
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J. 
1 

J.   . 
J   I 

Figure 5 

d   > t+p.+p.      d   > t+p      d   < t+p+p 

It is clear that in this case J  should precede J 

Since d -(t+p ) > p.. 

H 
(d . - t - p . )   ) 

1.   _J li    }    =  0 

Since w. > 0, d-(t+p) >0 and d-(t+p.) < p.. 
i ii i i j 

Therefore, 
Pi i    Pj   J 

is   positive. 

Case   VI:   Both   jobs   are   early   in   the   earlier   position   and   late   in   the   later 

position(Figure 6). 

J. 
l 

dtd. 

Figure 6 

d   > t+p   and d   < t+p+p 

•  •  -   • - : . -   ...  •      - 
*•''''*•'"*'*•" 
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d   > t+p   and d   < t+p+p. 

J   should precede J   if 

w(t+p+p-d) > w (t+p.+p-d ) 

Thus, m all cases the property is satisfied by at least one optimal solution. • 

This proposition can be used directly to find a schedule which cannot be 

improved by adjacent pairwise interchange. We exploit this property in the following 

manner  in  developing  our  heuristic:  for  every  job,  we  determine  an 'apparent priority 

index'(AP) as defined below: 

- if,   «»i-t-Pi^f 
1 Pit X J 

AP.   = 

where t is the current time. Since at any instance, we do not know what the optimal 

first two jobs on the machine would be, we approximate the value of p by X. In the 

absence of any estimate, we approximate the value of p by the mean processing time 

of the jobs. However, it may be noted tnat in assigning X value equal to the mean 

processing time of the jobs, we are in fact trying to strive towards local optimality. It 

is clear that since local optimality does not necessarily ensure global optimality in this 

problem, we may attempt to assign X a value which is more than one multiple of the 

average processing time of the jobs, 'hus helping us look beyond the next job and 

achieve better results. 

Our heuristic is as follows: at any instance, we determine the apparent priority 

for all unscheduled jobs. We assign next the job with the highest apparent priority. In 

case   of   ties,   we   assign   next  the   job   that   has   the   earliest   due   dateithe   secondary 

•   ..•-•---    -   -.    .   -       . •.    ---   -    -    .-.--•    .-.,.«--.   •..,•.,.   . ... i , ... >   v   .•-  ^  ...   .,..-..• i.   .    ;»• n i 
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criterion is based on our study of a relaxation of the problem where all jobs have 

equal processing times and equal weights. It is also interesting to note the existence 

of a property similar to the one we discussed for the relaxed problem with jobs 

having equal processing times. In this case, the result holds good not only in the case 

of adjacent pairwise interchange, but also when comparing jobs not necessarily 

adjacent to each other in an optimal solution. These details are presented in the 

appendix). 

It is interesting to note the change in apparent priority assigned by our heuristic 

over  time.     This  is  shown  in  Figure  7.     It is  clear  that  if  a  job  is  too  early,  then  it 

need   not   be    scheduled   immediately.       Also,    if   the    job   is    late,    it   is   given    full 

priority(w/p)   as   in   WSPT   rule.      In   the   intermidiate   range,   the   apparent   priority   is 

smoothly  increased.     Also,  we  note  that as  X  -»  oo,  our  heuristic  is  same as  WSPT 

rule.    However   as X -» 0, it assignee priority as follows: 

AP        =0 if slack is positive 

= w./p if slack is zero or negative 

.*•: 

r. -• 
r.'-- 

• 

. 

When we impose the secondary priority rule also, it may be noted that as X -> 

0. our heuristic behaves somewhat like EDD rule, but not quite the same. However, 

even when jobs are rather slack, our heuristic appears to have performed better than 

the EDD rulelsee the section on computational experiments). 

An appropriate choice of X is necessary for the good performance of our 

heuristic. Intuitively, as explained before, one would expect it to be related to the 

average processng time of the jobs. So the apparent priority may be written as 

follows: 

HI:       APi   = «if,   «i-t-M*V 
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M where k is a parameter to be determined and p is the average processing time 

£. •] of  unscheduled  jobs.     It  is  possible  for  us  to  develop  different  rules   for  assigning 

[£o apparent priority for the jobs.    However, we would expect these alternate schemes to 

have features similar to H1 such as assigning the job full priority once(w/p) it is late 

and zero or near zero priority if it is too early. In the intermediate range, we may 

follow alternate schemes which gradually increase the priority of the job. Two 

alternate scemes, where the rate of change in the priority of the job in the 

intermediate range itself increases over time are envisaged below: 

v-. 

>ft 

'.'• . 

H2:      AP 

y, H3:       AP. 
h> 1 

- -U F! 

!i„p(.|<V-pt>+) 

H2 and H3 are similar to H1. Their characteristics are shown in Figures 8 and 9 

respectively. It may be noted that in these cases, as in H1, jobs are assigned full 

priorityfw^p) if the slack is zero or negative. However, as is evident from Figures 8 

and 9, rate of change in the priority assigned to a job increases as t is increased until 

there is no more slack. In our pilot studies, we found that H3 performed better than 

H1 and a parameter value of k in the range of 0.5 to 2 yielded good results over 

wide range o;  problems. 

It is also interesting to note the asymptotic forms of the heursistics.    These are shown 

in table  1. 
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FIGURE 8 
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FIGURE 9 
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Apparent Priority 

Heuristic j k = 0 k - oo 

HI 0   if early 

w. 
—  o/w 
Pi 

Same as 
WSPT Rule 

H2, H3 Same as 
WSPT Rule 

0   if early 

w. 

1 ?i 0/" 

Table '1 

4. Review of prior computational studies 

In testing out various enumerative algorithms for the weighted tardiness problem 

(and also unweighted or average tardiness problem), various authors followed different 

procedures for generating test problems. [2] 

tm 

Two   important   factors   over   which   control   was   exercised   in   generating   test 

problems  are  the  tardiness  factor  and  the  due  date  range.     In  most prior  studies,  it 

was  assumed that the  job weights were independent of  other  factors.    The tardiness 

factor  is  a  rough  measure  of  the  number  of  jobs  which  might  be  expected  to  be 

tardy  in a random  sequence  [16].    Let p  be the  mean piocessing time and d be the 

average due date.    Then, in an average sense, the number of jobs completed in time in 

a random sequence is given by d/p.    The tardiness factor,  r, is given by 

T  =   1-Proportion of jobs on time 

=   1-((d/p)/n) 

d    = np(1-r) 

• The   typical   procedure    followed   by    various   authors   in   generating   the   test 

l» 

-._._...   -     ,.--'-•   - ^t— . . ..   . • -  

.     . .  v 
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K 

problems is as follows: generate the p. as per some distribution and generate the due 

dates using the tardiness factor and population mean or the sample mean of the 

processing times. The range for the due dates was controlled by specifying the 

variance of the distribution generating the due dates. 

Srinivasan [16], in testing his hybrid algorithm for the average or unweighted 

tardiness problem used a bivariate normal distribution for generating processing times 

and the due dates. Srinivasan generated test problems controlling for the following 

factors: the coefficient of variation for the processing times, the coefficient of 

variation for the due dates, the correlation coefficient between the processing times 

and the due dates. The number of jobs in a problem was varied from 8 to 50. His 

results indicated that the problems with tardiness factor of 0.6 were most difficult to 

solve. 

In a study comparing the effectiveness of various algorithms for unweighted or 

average tardiness problem, Baker and Martin [ 1 ] followed a similar procedure, but 

used a normal distribution to generate processing times and uniform distribution to 

generate due dates. The range of the due dates was varied from 20% to 95% of the 

total processing times of the jobs. The number of jobs in a problem was varied from 

8 to  15. 

Fisher [8], in testing a dual based procedure for solving average or unweighted 

tardiness problem, used a uniform distribution to generate both the processing times 

and the due dates. He tested his procedure on problems with the number of jobs 

varying upto 50, tardiness factor varied from 0.5 to 0.8 and the range of the due 

dates varied from 20 to 100% of the total processing time of the jobs. His 

conclusions regarding the problem difficulty are similar to those of Srinivasan  [16] 

I* 
••- 

•r   - 

Schweimer [15], in testing his branch and bound procedure for the weighted 

tardiness problem, generated processing times from a uniform distribution [ 1.10] and 

the due dates were, generated from a uniform distribution[p ,5.5n].    Job weights were 

.   . ..   . •.  ..  •_•_.. 

. i.•.•-•«- f -.-••--•.  ...-,, i -. -1'- »-*-*  >••• .».».».«. 
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generated from a uniform distribution [1.5]. Number of jobs in a problem were 

chosen to be   10 or 20.    It may be noted that the weights were generated independent 

I'.', of the processing times and the due dates.    It may also be noted that no control was 

exercised over the tardiness factor.    In fact, it can be shown that tardiness factor was 

K implicitly set at approximately 0.5. 

In a study conducted by RinnooyKan et al [12] to test their branch and bound 

algorithm for the weighted tardiness problem, weights were generated from a uniform 

distribution[4.5.15.5]. Problem sizes of 10.15 and 20 were tried. Tardiness factor 

was set at 0.2.0.4,0.6 and 0.8. Processing times were generated using the Normal 

distribution and the due dates were generated from a uniform distribution. As in 

Schweimer's study, job weights were generated independent of the processing times 

and the due dates. RinnoyKan et al study indicated no relation between computational 

time and the correlation coefficient between processing times and the due dates. 

Problems with large range for due dates were relatively easier to solve compared to 

problems with short range for the due dates. RinnooyKan et al study indicated that 

the problems with tardiness factor of 0.8 were difficult to solve(compared with 0.6 in 

Srinivasan's study [16]). However, any such comparison must take into consideration 

the fact that RinnooyKan et al study was on the weighted tardiness problem whereas 

Srinivasan's study was on the average or unweighted tardiness problems. 

Picard and Queyrenne [11] tested their adaptation of time dependent travelling 

salesman algorithm to the weighted tardiness problem on the same set of problems 

used by RinnooyKan et al. Schräge and Baker [14] used the same set of problems 

generated by RinnooyKan et al to test their procedure 

»£ 5. Measure of performance 

Prior   computational   studies   on   the   weigh;ed   tardiness   problem   were   largely 

confined  to  validating  enumerative  methods.     This  being  the  case,  it  is  not  surprising 

t^ that   the   emphasis   in   these   studies   was   on   the   use   of   computational   time   and/or 

memory   requirements.      However,   in   our   study,   we   wish   to   find   how    good'   our 

•     & .:       - 
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heuristic is when compared to the optimum value. Since this implies that the study is 

to be conducted across wide range of values of number of jobs in a 

problem,processing times of jobs, weights etc., the performance measure should take 

these aspects into consideration. Absolute deviation from the optimum value is likely 

to suffer from scaling effects. Any averaging of the percentage deviation from the 

optimum is likely to mislead us since such deviations are likely to be very large in the 

case of problems with low tardiness factor(For a more detailed discussion of the 

choice of appropriate measure of performance, see [5]). The metric that we will be 

using in our study is as follows: 

Performance of the heuristic: 

Weighted tardiness for 
heuristic sequence 

W * n * p 

Optimum 
value 

W * n * p 

- 
-. 

: 

W.n and p are, respectively, the mean weight of the jobs, number of jobs and 

the mean processing time of the jobs in a problem. We normalize the performance 

measure by dividing the deviation from the optimum by the number of jobs. This 

normalizes the measure with respect to the number of jobs in a problem and thus 

permits comparison among problems with different number of jobs. Further division 

with the average weight normalizes the measure for the differences in the average 

weights of the job sets in different problems. Finally, divfsion with the average 

processing time expresses the measure in terms of the number of average processing 

times tardy. 

In case of problems where the optimum value could not be found due to 

computational limitations such as time and/or memory requirements, we used a tight 

lower bound and the best feasible solution. 

L-.-.   •. -••      _. ._ -    •- - - . :        •     - •      -   i - - -     -      - 
-     -  •----* 
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6. Method for obtaining optimum or 'high bench mark' solution 

In order to test our heuristic, it is necessary that we compare the performance 

of our heuristic against the optimum, if possible. Based on the reported performance 

results, three enumerative methods [14, 11, 12] seem most promising. Of all the 

enumerative methods, we choose the dynamic programming procedure suggested by 

Schräge and Baker [14]. Among the various enumerative methods, this procedure has 

the best computational time performance for the set of tested problems. Furthermore, 

the labelling procedure used in this method leads to compact memory requirements, 

particularly in case of the problems with high tardiness value. These are the very 

problems that have been found by other researchers most difficult to solve. Also, the 

stopping rule that we develop for identifying first job/jobs in an optimal solution is 

based on the dynamic programming procedure. 

It is however possible that, though the dynamic programming approach suggested 

by Baker and Schräge [14] requires the least computational time, labelling space 

requirement may be too large, particularly in case of the problems with low tardiness 

factor. These are the problems for which no computational results have been reported 

by Baker and Schräge. Also, none of the earlier studies have reported results for 

problems having more than 20 jobs in case of weighted tardiness problems. Since we 

planned to test problems having more than 20 jobs, it seemed likely that we might be 

constrained by limitations of excessive memory requirements and/or excessive 

computational time. In such cases, we compared the performance of our heuristic 

against a 'high bench-mark', such as a tight lower bound. Unfortunately, Schräge and 

Baker  [14]  procedure does not compute lower and upper bounds for the problem. 

Si 

Since it is most likely that in case of large problemslproblems with more than 

20 jobs) we might be constrained by the limitations of computational time and/or 

memory requirements, we modified the Baker and Schräge procedure [14] to 

determine the lower and upper bounds. The procedure was further modified to 

arrange  the  jobs  in  stages,  which  was  necessary  to  determine  the  lower  bounds  and 

,   .    .'..    .    .   .  .- -- -    ••--...-•   -v»-.   >   --. .--..•. . , .    i id   4.. .. •    •    *    •    • • * 
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fl also for the use of a stopping rule developed by us. The bounds become sharper and 

sharper as we progressively move from one stage to the next. The details of the 

hybrid dynamic programming procedure developed by us are shown in the next section. 

6.1 Hybrid dynamic programming procedure 

This procedure is a modification of the dynamic programming procedure for the 

sequencing problems with precedence constraints developed by Schräge and Baker 

[14]. We modified this procedure in order to determine the lower and upper 

bounds at every application of the recursive relationship. We also developed a 

stopping rule for identification of first job in an optimal sequence. We follow notation 

similar to Baker and Schräge [14] with appropriate additions as needed for our 

modification of the procedure. 

Notation 

i 

•« 

j. 

s 

N 

t(S) 

S 

f(S) 

R(S) 

g(k,t(S)) 

WSPT(S) 

B(S) 

RS) 

LB(I) 

: Job i 

set of feasible jobs.    S is feasible if, for every job J. € S, 

all the predecessors of J. are also included in S. 

Set of all jobs. 

I.  c p 
j«S Kj 

N \ S 

Value of the optimal schedule for set S 

Set of jobs in S that have no successors in S 

Penalty for completing J   at t(S), ktS 

Value of minimum weighted lateness schedule for 

the jobs in S with the release date being t(S) 

Lower bound for the weighted tardiness problem given that 

feasible set S is scheduled optimally at the beginning 

Index of the job scheduled to be in the first position in 

the sequence generated for f(S) 

Lower bound for the problem given that all feasible 

subsets of cardinality I have been enumerated. 

Recursive relation is  [16], 

f(S) = mink(R(S) { f(S\k) + g(k. t(S)) } 

• 
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Initial condition is f(0)=0 

Optimal value is given by f(l\l). 

Schräge   and   Baker [14]   provided   the   detailed   procedure   for   enumerating  all 

B feasible subset S in such a way that S\k is enumerted before S and a procedure for 

£j assigning an address to the subset S\k so that f(S\k) can be accessed quickly 

.%' 

.V1 At every enumeration, we determine B(S) as follows: 

I 
':'•• B(S) = f(S) + max {0. WSPT (S) } 

If BIS) ä current best feasible solution, then f(S) can be set at infinity and 

•* need not be further considered.    Further, a lower bound for the problem is 

\i given by 
• * 

LB(I) = mm   B(S) V        | S |   = I and S c. |\| 

I 
An upper bound for the solution is given by 

UB(S) = f(S) + weighted tardiness of WSPT sequence for jobs in S 

We terminate if UB(S) = LB( | S |   -  1) 

6.2 Stopping rule for the optimal first job 

__ In order to guarantee the optimal first job, we can use the following procedure: 

^ suppose  F(S)  is  same  for  all  S  such that   | S j =l,  l=2,3„..n.     Stop  further  computation 

after the condition is satisfied for the smallest value of I. 

For  identifying  the   optimal   first   job  and/or  determmig  the  lower   bounds,   it  is • 
necessary  to  know  when  all   feasible  subsets  of   jobs  of  given  cardinality  have  been 

enumerated     This may be done by numbering the jobs and arranging the jobs in stages 

m • 
as shown below 

1, Jobs are assigned to stages such that no job is assigned to a stage less 

.-•-•-• •  - • • 
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than or equal to its predecessors. 

2. Jobs at any stage have indices greater than jobs at earlier stages. 

3. Every job is assigned to the earliest possible stage, subject to (1) and (2). 

These details are shown for a hypothetical example in Figure TO. It may be 

noted that, when the above mentioned job indexing procedure is used in conjunction 

with the enumeration scheme proposed by Baker and Schräge [14], all feasible 

subsets of cardinality k-1 would have been enumerated before the job with the lowest 

index  in stage k can be considered  for inclusion  in a  feasible subset of tasks.    Thus. 

the  updating  of  LB(I) and  checking  for the  optimal  first  job  can be  carried  out  when 

K the  job with the  lowest index at any  stage  is being  considered for the  first time  for 

_«: inclusion in the feasible set S. 

Another  independent  stopping  rule  for  identifying  the  optima   first  job   follo.vs 

from the next proposition- 

PROPOSITION II: If the job with the highest w/p is tardy even if scheduled 

first, then there is an optimal sequence in which it must be sequenced first 

PROOF:  Without  loss  of   generality,   assume  that  w^p     >   w /  p          Also, 

since  J    is  tardy  even  if  scheduled  first,  p    >  d       Suppose there  exists  an optimal 

schedule such that J1  occupies jth position and let J   occupy j-I  th position(Figure  11). 

Pairwise interchange of J and J1 does not affect the completion times of other 

jobs. Decrease in the value of the objective function due tc pairwise interchange of 

J  and J1 equals 

wUO.T-p-dr-lO.T+p+p^d,}"]   + wl[{0,T+p|+p-(1)-dl}
+-(0,T+pl-dl}*] 

4   wlP[ - wp, 

i   lp(p,f 1[(w,/p,) " (w/P|)] 

*- •'• ^•-•'.-•'^     . _ .    _'  -^   •_ _;. _.__-..^^. i_j -     --.-'-     - -ft- l". ->-.-..---- i -     - . . » A— 
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J<    7 

Stage 

FIGURE TO 

FIGURE 11 
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However, the right hand side is non negative and this contradicts the optimality 

of the original schedule. Thus, by successively 'pushing' J to the f i; st position, we 

get set of dominant schedules and hence the result 

7. Design of the experiment 

Control   variables   in   generating   the   test   problems   are:   number   of   jobs   in   a 

problem,  distribution of the processing times,  distribution of the due dates, correlation 

between  the  processing times and the  due dates,  priority  or  the  weights  assigned to 

the jobs. 

•  Processing times  and the  due  dates:  Processing  times  and the  due dates 

are   generated  using   bivariate   Normal  distribution   which  incorporates   the 

variation   in   processing  times,   variation  in   due   dates   and  the   correlation 

' between   the   processing  times  and  the  due   dates.     We   set  the  various 

I parameters at the following levels: 

Tardiness  factor(r) :0.2,0.4,0.6,0.8 

I Coefficient of variation for trie 
processing times :0.1,0.3 

Correlation coefficent between 
P1   and  c^   (p) :0,0.5 

Range  factor for the due dates (R)   -.0.4,0.8 

Population mean for the  job 
processing times :30 

• Weights for the jobs: In prior studies by RinnooyKan [12] and 

Schweimer [15], job weights were generated independently of the job 

processing times and the due dates. However, we feel that on average 

the penalties associated with the tardiness of the jobs would be 

proportionate to the work content of the jobs. Taking this into 

consideration, we determine the weights for the jobs by independently 

determining the factor w/p from the uniform distribution in the range 

[0,2], 

w =(w /p ) *p 

. •' - . •    • ] 
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(w./p.) is random variate generated from the uniform distribution [0,2] 

and p is the processing time generated from a bivariate normal 

distribution as described above. 

• Number of jobs: In order to study the effect of the number of jobs in a 

proülem on our heuristic, we choose the number of jobs in a problem to 

be  10. 20 or 30. 

We tested 20 problems for each specification of the parameters. Thus, in total 

we tested 20x4x2x2x2x3=1920 problems. 

7.1 Computational experiments 

In testing our heuristiclfor compar.son purposes, we used exponent form of our 

heuristic [H3] with parameter value set at 0.5) on 1920 problems, we made a few 

further changes. For problems where optimum solution could not be founddargely due 

to excessive memory requirement for problems with 30 jobs), we compared myopic 

heuristic solution against lower and upper bounds. We found additional lower and 

upper bounds by solving the linear assignment relaxation procedure suggested by 

RinnooyKan et al [12]. Best upper bound for the solution was found by choosing 

the best solution among EDD sequence, WSPT sequence, Montagne's sequence, upper 

bound generated by the hybrid dynamic procedure at termination, solution to linear 

assignment relaxation procedure suggested by RinnooyKan et al and fifteen solutions 

generated by five parameter values for each of the three different versions of our 

heuristic 

Tables 2 through 5 give the computational results for various problem sizes. 

Table 2 provides the results for problems with 10 and 20 jobs. As may be noted, 

our heuristic performed well when compared to other heuristics. As noted earlier, we 

kept  the parameter  value of  the  myopic heuristic  fixed  at  0.5.     However,  results  can 

2 
Our   pilot   studies   as   well   as   published   results   [12]   showed   that   the   lower   bound  obtained   by  this 

. A. procedure  is  about   20%  belov   the optimum value.     Howver,   the  lower  bound  tends  to  be  tighter   if  the 
problems are less tardy and/or the variance of the job processing times is  low. 
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TABLE 3 

Mean Value of Performance Measure for fully solved 30 Job Problems 

• (n = 30) 

R = 0.4 

T 

Number of 
problems 
fully solved OPT EDD WSPT MP MYH 

0.2 73 0.027 0.107 0.099 0.035 0.017 

0.4 26 0.400 1.125 0.290 0.164 0.027 

0.6 8 2.069 2.049 0.439 0.350 0.056 

0.8 16 5.186 4.242 0.564 0.315 0.018 

0.8 

I 

g 

T 
Number of 
problems 
fully solved OPT EDD WSPT MP MYH 

0.2 80 0.001 0.033 0.224 0.020 0.007 

0.4 38 0.172 0.521 0.739 0.260 0.048 

0.6 10 1.600 2.412 1.215 0.634 0.073 

0.8 20 5.380 4.223 0.837 0.352 0.030 

OPT: Mean Value of Normalized Optimum 
EDD: Earliest Due Date Rule 
WSPT: Weighted Shortest Processing Time Rule 
MP: Montagne's Procedure 
MYH Myopic Heuristic [H3] with parameter k value set at 0.5 
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i 

further be improved at low tardiness factors by increasing the value of the 

paramemter k. In case of problems with 20 jobs, we found optimum for all problems 

except two problems with tardiness factor 0.8. 

In the case of 30 job problems, we could not find the optimal solution to all 

problems. Results comparing the performance of various heuristics for problems 

where optimum could be found are shown in Table 3. It is clear that the myopic 

heuristic performed better than competing heuristics in this case also. Results in the 

case of problems for which optimum could not be found are shown in Tables 4 and 

5. Table 4 compares the mean deviation of normalized values of various heuristics 

from the best lower bound. Here again, myopic heuristic performs better than 

competing heuristics. Table 5 compares the mean value of myopic heuristic to the 

best available lower bound and best available upper bound. It is clear from this table 

that the myopic heuristic provided the best possible results among all heuristics tested. 

m 

m 

In case of problems for which optimum found, it appears that the mean 

performance measure is at its worst for problems with tardiness factor 0.6 (Tables 2 

and 3). This conclusion agrees with Srinivasan's conclusion [16] that problems with 

tardiness factor 0.65 were most difficult to solve. His conclusion was based on the 

computational time required to find optimum for the problems. 

8. Conclusion 

It is clear from our computational study that the new myopic heuristic developed 

by us is much better than any other heuristic tested. The heuristic is simple and easy 

to implement in most real life situations. The myopic heuristic can be used as a 

dispatching rule as well. In such a case, we merely determine which job is to be 

loaded on the machine next and make subsequent decisions as and when the machine 

becomes available for further loading. It is further possible to improve upon the 

schedule generated by the heuristic by checking for the local optimality among adjacent 

jobs. It is easy to build a procedure where we start with an initial schedule generated 

by our heuristic and. make changes among adjacent jobs until no further improvement in 
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a 
B 

the solution takes place. We are currently extending the application of our myopic 

heuristic to situations where we have more than one processorlidentical processors in 

parallel).   Further extensions in the area of generalized flow shops are being explored. 
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APPENDIX 

Consider the following relaxation of the single machine weighted tardiness 

problem: suppose that all jobs have unit processing times(if not. we split them into 

jobs of unit processing time and assign each the weight w./p. The due dates for 

these  jobs  are  set  at  d,d-1,d-2 d.-p.+ H     Let  t    be  the  completion  time  for the 
I     I I I    rl c 

job J. 

Consider the interchange of the current job J with another job J which is due 

to be completed at t +X. Since all jobs are of equal length, such interchange does not 

affect the completion time of any other job. Let w and d be the weight and the due 

date of job J. 

PROPOSITION A.I: Let t be the completion time of J.. Consider another job J. 

completing X time units after J.. Then, an optimal sequence should satisfy the 

following property- 

w,      l-(di"V + (d. - t   ) H 

>      w.      1 -    _j c 

X 

PROOF: We have to consider eight subcases.    These are as follows: 

Case I: Both jobs are late in either position Since both jobs are late in either 

position, the job with higher weight must precede the job with lower weightlFigure 

A.1) 

It is clear that in this case the apparent priorities of both jobs are same as their 

weights and the condition is satisfied. 

Case II: Both jobs are early in either position(Figure A.2). In this case, we are 

indifferent  as  to  which  job  is   scheduled   first.     Schedule   first  the   job  with  highest 
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apparent priority. 

Case   III:   Both  jobs  are   early   in  the  current  position  and  late   in  position  t +X 

(Figure A.3). 

Cost if J. completes at t   and J   completes at t +X = w (t +X-d ) + 0 
I r c j r c J   C J 

Cost if J   completes at t +X and J. completes at t   = w (t +X-d) + 0 

k 

I 
I 

I Ev; 

:•:- 

m 

+ 

Schedule J  at t   and J   at t +X if 
i C J c 

CDSUX)     *.       »Jl-'filV*) .Jjl-
<drte)tj 

Case IV: One job is late and the other is early in either positionFigure A4). It is 

clear that the job that is late should be scheduled first. Note that the job that is early 

has zero apparent priority and the job that is late has full weight as its apparent 

priority. 

P* Cases V and VI: One job is late in either position and the other is early in earlier 

&#•• position and late in later positionFigure A.5) 

Cost if J  completes at t = w (t +X-d ) 
l C I    C j 

and J   completes at t +X 

Cost if J   completes at t = w(t +X-d) + w (t -d ) 
j e i c i j c    j 

and J   completes at t +X 

We schedule J  at t   and J   at t +X if 
I C J c 
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B 

w(t +X-d)    < w(t +X-d) *wlt -d ) 
J    C J I    C I J    C        J 

II    (di - o 
J i 

X 

Since J   is late at t   and d -t   ^ X, the above expression may be rewritten as 
J C I      c 

wi i- «i-V* >      w. 
J 

i      (d, - t   ) 

X 

Cases VII and VIII: One job is early in either position and the other is early in earlier 

position and late in later position (Figure A.6). It is clear that J should be scheduled at 

t , since d.-t    > X, apparent priority of J. will be greater than zero. 

So,  in all the cases discussed above, job with higher apparent priority should be 

scheduled in the current position. 

PROPOSITION A.II:    If all jobs have unit processng times and equal weights, the 

EDD sequence minimizes the average tardiness. 

PROOF:    Consider   two   adjacent   jobs    in   an   optimal    sequence   such   that   J 

precedes J   and d   > d. 

Jj 

9. 
Figure A7 

Case  I:  Suppose both  J   and  J   are  early  or on  time     Since  J   is  early  or  on 

time and d   > d , pairwise interchange does not degrade the solution. 

Case  II:   Both   J   and  J   are  tardy      Pairwise  interchange  does  not  degrade  the 

solution since both processing times and weights are equal. 
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Case III:  J   is tardy and J   is early or on time.    This is impossible since d   >  d 

and    ompletion time of J   <  J.. 

Case IV: J- is early or on time and J. is tardy. If J is on time, then pairwise 

interchange does not degrade the solution. If J is early, then pairwise interchange 

improves the solution 

Thus, in all cases, pairwise interchange does not degrade the solution and. in 

fact, may improve it Since our arguments employ only information about the individual 

jobs and not the location in the sequence[2] . the EDD sequence is optimal. 
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